HAMSTRING MUSCLE LENGTH AND PELVIC TILT RANGE IN INDIVIDUALS WITH AND WITHOUT LOW BACK PAIN

By FASUYI, FRANCIS O.

Email: <u>tfunsho@gmail.com</u> Phone no: +2348036142519

INTRODUCTION

- Forward bending (FB) = lumbar flexion + pelvic rotation.
- Poor hamstring flexibility = limit FB unless compensated for by increased lumbar flexion.
- Lumbar flexion a developmental factor of low back pain (LBP).

STATEMENT OF PROBLEM

- 3
- No relationship between HML & PTR in Static standing (Mohammed et al, 2002; Kendall et al, 2005)
- Previous researchers have suggested no relationship exists during static standing (Nourbakhsh& Arab, 2002; Congdon et al, 2005)
- □ What will be the relationship in FB?

OBJECTIVE

To compare each of HML and PTR in individuals with and without LBP

To investigate relationship between HML and PTR in the two groups during FB

SIGNIFICANCE

This study showed that no causal relationship exists between HML and PTR during FB. □ It has further given credence to the measurement of HML when evaluating LBP patients.

PARTICIPANTS

30 (16 females, 14 males) - LBP group.
30 (14 females, 16 males) - without LBP group.

METHOD

- Research protocol: approved by UI/UCH Institutional Research Committee (UI/EC/11/0087).
- Study design Ex post facto
- Consecutive sampling technique
- HML active knee extension test (Norris & Matthew, 2005).
- PTR during dynamic FB AcumarTM Digital Inclinometer (Bierma-Zeinstra et al., 2001)

DATA ANALYSIS

- Descriptive statistic; to summarize data,
- Pearson Product Moment Correlation
 to investigate the relationship between
 HML and PTR of the two groups and
- Independent 't'-test to determine HML and PTR differences in the two groups with
- □ Alpha level set at 0.05.

RESULTS

9

□ TABLE 1: PHYSICAL CHARACTERISTICS OF PARTICIPANTS

	With LBP		Without LBP		Calculated	p-value
	(n=30)		(n=30)		t	
	Mean ± SD	Range	Mean ± SD	Range		
Age	53.70 ± 8.62	35 - 70	26.07 ± 5.70	20 - 41	14.65	0.00**
Weight	66.83 ± 9.50	5 ^{1 –} 94	69.50 ± 6.50	52 - 83	-1.27	0.21
Height	1.66 ± 0.08	1.50- 1.88	1.69 ± 0.05	1.54– 1.77	-1.64	0.11
.05) ignificant difference						

M-Mean

(α = ** _

S.D – Standard deviation

RESULTS

TABLE 2: COMPARISON OF MEASURED VARIABLES BETWEEN THE GROUP WITH AND WITHOUT LBP

		With LBP		Without LBP		Calculated	p-value
		(n=30)		(n= 3 0)		t	
		$M\pm S.D$	Range	$M\pm S.D$	Range		
	AKE	$142.10\pm$	123 – 157	$147.67\pm$	133 – 163	-2.61	0.01**
	Test	8.85		7.64			
	Pelvic	$16.20 \pm$	-29 - 42	$9.00 \pm$	-21 - 30	1.66	0.10
	tilt	18.47		14.96			
** = s	(α = 0.05) ** = significant difference						
M - M	M – Mean						

S.D – Standard deviation

RESULTS

TABLE 3: RELATIONSHIP BETWEEN HAMSTING MUSCLE LENGTH AND PELVIC TILT IN GROUP WITH LBP AND GROUP WITHOUT LBP

Groups	Pearson Correlation	Significance
With LBP	-0.068	0.722
WILL LDF	-0.008	0.722
Without LBP	-0.019	0.919
$(\alpha = 0.05)$		

DISCUSSION, CONCLUSION & IMPLICATION

- Contrary to previous report (Bellew et al., 2010), no significant relationship exists between HML and PTR in the two groups.
- This study has shown a normal static state of the spine, to dispel the idea of an increase in PTR with concomitant increased lumbar lordosis in patients presenting with LBP.
- Therapist are encouraged to evaluate hamstring flexibility in LBP patients.

REFERENCE

- Bellew S, Ford H and Shere E. 2010. The relationship between hamstring flexibility and pelvic rotation around the hip during forward bending. *The Plymouth Student Journal of Health & Social Work*. 2: 19 – 29
- Bierma-Zeinstra S, Van Gool J, Bernsen R and Njoo K. 2001. Measuring the sacral inclination angle in clinical practice: is there an alternative to radiographs? *Journal of Manipulative and Physiologyical Therapeutics*. 24(8): 505 508
- Congdon R, Bohannon R, and Tiberio D. 2005 Intrinsic and imposed hamstring length influence posterior pelvic rotation during hip flexion. *Clinical Biomechanics* 20: 947 – 951
- Kendall F, McMcreary E, Provance P, Rodgers M, and Romani W. 2005 Muscles: Testing and function with posture and pain, 5th ed. Baltimore, MD: Williams and Wilkins.
- Mohamed O, Perry J, and Hiplop H. 2002. Relationship between wire EMG activity, muscle length, and torque of the hamstrings. *Clinical Biomechanics* 17: 569 – 579
- Norris CM and Matthews M. 2002. Correlation between hamstring muscle length and pelvic tilt range during forward bending in healthy individuals: An initial evaluation. *Journal of Bodywork and Movement Therapies*. 10(2): 122 126
- Nourbakhsh M and Arab A. 2002. Relationship between mechanical factors and incidence of low back pain. *Journal of Orthopaedic & Sports Physical Therapy*. 32: 447 – 460