PROBIOTIC BEVERAGE FROM FLUTED PUMPKIN LEAF JUICE FERMENTED WITH Pediococcus pentosaceus IO1

By

ADESINA, I. A. AND OLUWAFEMI, Y. D.

Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State

Presented at the Young Microbiologists' Conference

OUTLINE OF THE PRESENTATION

- Introduction
- Objective
- Materials and Methods
- Results and Discussion
- Conclusion
- References

INTRODUCTION

- Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO, 2002).
- Lactic acid bacteria (LAB)
 - > constitute a broad heterogeneous group of generally food-grade microorganisms (Mozzi, 2016).
- The need for alternative food matrices to dairy products...
- Fluted pumpkin (*Telfairia occidentalis*)
 - > dark green leafy vegetable
 - > nutritious and are rich in vitamins and minerals

Plate 1: Fresh pumpkin leaves

OBJECTIVE OF THE STUDY

 To determine the suitability of fluted pumpkin leaf juice as a raw material for the production of probiotic beverage with *Pediococcus pentosaceus* IO1.

MATERIALS AND METHODS

- Preparation of pumpkin leaf juice
 - > Extraction of juice
 - Pasteurization of juice at 80°C for 5 min
- Bacterial strain and growth condition
 - A lactic acid bacterial strain, Pediococcus pentosaceus IO1, was used for this study.
- Fermentation of pumpkin leaf juice
 - Probiotic pumpkin leaf juice preparation was done by fermentation with *P. pentosaceus* IO1 according to the methodology described by Yoon *et al.* (2006).
- Chemical analyses
 - > pH
 - Sugar content
 - > Vitamin C assay

MATERIALS AND METHODS CONT.

Mineral analysis

- Calcium, magnesium, and iron were determined using atomic-absorption spectrophotometer (AOAC, 2005)
- Sodium and potassium were determined using the flame photometric method (AOAC, 2005)

Microbiological analysis

Viable cell counts on MRS agar plate using standard method

Statistical analysis

> SPSS software package was used to analyze the experimental data

RESULTS AND DISCUSSION

Fig. 1: pH value of pumpkin leaf juice (control) and juice treated with *P. pentosaceus* IO1 during fermentation

Fig. 2: Sugar content in pumpkin leaf juice after 48 h of fermentation

Fig. 3: Vitamin C content in pumpkin leaf juice after 48 h of fermentation

Fig. 4: Viable cell count of *P. pentosaceus* IO1 in in inoculated pumpkin leaf juice during fermentation

Table 1: Mineral contents (mg/100 ml) in pumpkinleaf juice after 48 h of fermentation

Mineral contents	Control	Fermented Juice
Calcium (<mark>Ca</mark>)	58.00 ^a ±1.41	63.00 ^a ±1.40
Magnesium (<mark>Mg</mark>)	87.00 ^b ±0.10	94.00 ^a ±0.10
Potassium (K)	406.00 ^a ±2.83	396.00 ^b ±1.41
Sodium (Na)	18.00 ^a ±1.41	16.00 ^a ±2.00
Iron (<mark>Fe</mark>)	1.00 ^a ±0.02	1.40 ^a ±0.01

CONCLUSION

- Pumpkin leaf juice has the potential to be used for the production of functional food beverage.
- Fermented pumpkin leaf juice could serve as a healthy beverage for vegetarians and lactose-allergic consumers.

REFERENCES

AOAC (2005). *Official Methods of Analysis*. Association of Official Analytical Chemists. 25th ed. Arlington, VA.

- FAO/WHO (2002). Guidelines for the evaluation of probiotics in food. In Food and Agriculture Organization of United Nations and World Health Organization. Working Group Report, London, Ontario. pp. 1 34.
- Mozzi, F. (2016). Lactic Acid Bacteria. *Encyclopedia of Food and Health*. pp. 501 – 508.
- Yoon, K. Y., Woodams, E. E. and Hang, Y. D. (2006). Production of probiotic cabbage juice by lactic acid bacteria. *Bioresource Technology* 97: 1427 – 1430.

THANK YOU