
International Journal of Networks and Communications 2013, 3(3): 81-90
DOI: 10.5923/j.ijnc.20130303.02

A Discriminatory Model of Self and Nonself Network
Traffic

Adetunmbi A. O, Olubadeji Bukky, Alese B. K, Adeola O. S*

Department of Computer Science, Federal University of Technology, Akure, Nigeria

Abstract The matrix of business and other transaction systems over the Internet makes computer security a critical issue
in our day-to-day activities. In recent times, various approaches ranging from rule-based, expert system to data mining have
been subjected to extensive research in handling security breaches on computer networks. Immune system (IS) presents a
protection against the possibility of malfunctioning and failure of individual host cells. In mammals it keeps the organisms
free of pathogens which are unfriendly foreign organisms, cells, or molecules. Two approaches to change detection which are
based on the generation of T-cells were examined. One is an existing model while the other model is proposed by us, the one
proposed by us is called immunological model, which is a protection model capable of autonomously detecting (Nonself)
and opposing the attempts at intrusion and explo itation. The two models were implemented using C++ programming
language and their feasibility determined on 1999 International Knowledge Discovery Intrusion Detection Datasets. The
results reveal that our proposed model outperforms the existing model not only in terms of detection accuracy but also in
terms of simplicity and generation of exp lainable ru les inform of if ... then statements. The classification accuracy of our
model christened IMSNT on train ing and test Datasets are 97.06% and 86.39% as against 89.65% and 85.70% on the
Stephanie et al approach, which shows that it is a promising approach. The proposed system apart from its capability of
detecting and monitoring the activities on the network can be used in extracting virus signature patterns.

Keywords Immune System, T-cells, Intrusion Detection, Self-Network and Non-self Network

1. Introduction
The Immune System (IS) is complex, and it has novel

solutions for solving real-world problems. This can be
applied as a solution to systems design in case there is an
artificial system facing similar problems faced by the
Immune System, which required reasonable understanding
of immunology. The problem that the IS address is similar to
the problem faced by computer security systems: the
immune system protects the body from pathogens, and
analogously, a computer security system should protect
computers from intrusions. This analogy can be made more
concrete by understanding the problems faced by computer
security systems[1-2].

The word immunity (from Lat in immunitas) means
"freedom from". The main purpose of the immune system is
to keep the organis m free from unfriendly fo reign organis ms,
cells , o r molecu les (co llect ively called pathogens). The
innate immune system primarily is inborn which consists of
the endocytic and phagocytic systems, which involve motile
scavenger cells such as macrophages that ingest e xt ra

* Corresponding author:
deleadeola@yahoo.com (Adeola O. S)
Published online at http://journal.sapub.org/ijnc
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

cellu lar molecules and materials, clearing the system of both
debris and pathogens. Most of the inspiration for this
research has been drawn from the adaptive immune system
(IS), and as such we shall preview an adaptive immunity.

The adaptive immune system is so-called because it adapts
or “learns” to recognize specific kinds of pathogens, and
retains a “memory” of them for speeding up future responses.
The learning occurs during a primary response to a kind of
pathogen not encountered before by the Immune System.
The primary response is slow, often first only becoming
apparent ninety-six hours after the in itial infection, and
taking up to three weeks to clear the in fection. After the
primary response clears the infection, the IS retains a
memory of the kind of pathogen that caused the infection.
Should the body be infected again by the same kind of
pathogen, the IS does not have to re-learn to recognize the
pathogens, because it “remembers” their specific appearance,
and so can mount a much more rapid and efficient secondary
response.[3]. The secondary response is usually quick
enough so that there are no clinical indications of a
re-infection. Immune memory can confer protection up to
the life-time of the organism (a canonical example is
measles).

Also a model of intrusion detection is based on the
principles of the immune system, that carry out both
signature-based and anomaly detection which has

82 Adetunmbi A. O et al.: A Discriminatory Model of Self and Nonself Network Traffic

mechanis ms for detecting deviations from a set of normal
patterns, and it has ways of storing and recalling specific
patterns associated with previous pathogenic attacks.
Though, the current Computer security system protects
computers from intrusions but the growing scale of computer
networks and sophisticated software codes make them more
vulnerable to alien intrusions, such as computer viruses,
intentional corruption, among others that could lead to
serious failures of computer-based informat ion and control
systems. Majority of the computer security systems widely
used are either rule-based or expert system based which are
characterized by low accuracy in terms of detections of
intrusions on computer system or network.

Various researchers have imbibed the concept of
biological systems to resolve some facet of information
security in a computer system and networking environment.
Among these researchers include the works of[4] on
Artificial Immune System for v irus detection, and[5] on
Artificial Immunity System for Network Security Situation
Awareness Technology. Their findings show that it is a
proving approach as it reduces false positive rate and cases of
security incidence on computers and computer networks.
The essence of the immune system is to keep the organisms
free of pathogens which are unfriendly foreign organisms,
cells, or molecu les for survivability.

The adaptive immune system made up of lymphocytes,
with the ability to learn, recognize specific kinds of
pathogens, and retains memory of them for future responses.
The immune system model used is based on T-cells approach.
Here, intrusive traffics refer to as nonself stand for pathogens
while the classification model developed with the ability to
learn and generate patterns of intrusions represent the T-cells.
In this paper, an attempt is made to develop an
immunological model to differentiate benign and malicious
network traffic, demonstrating the feasibilities of these
approaches on the experiment performed on intrusion
detection data available at Massachusetts Institute of
Technology, University website, USA.

2. Biological versus Computer Immune
Systems

There are different ways to interpret biological immune
systems for security. The immune system is perhaps the most
obvious system, which would have an analogy for security.
Its role is to defend against attack, patch and clean up after an
attack; thus appropriate for all of the threats.[6] reports
antigens (foreign proteins) are recognized by antibodies
(immune system detectors). The antibodies are highly
specific, only b inding to a small set of antigens if they do
bind, then a complex set of events occur that result in the
foreign protein being destroyed. Antibody cells are covered
with antigen detectors and they are as theoretically likely to
match and destroy healthy cells as foreign proteins. This

would obviously be undesirable, and in most cases does not
happen. The immune system thus appears to be able to
discriminate between “self and “non-self”.

[7] makes the analogy between self in the body and normal
behaviour of a computer system (non-self is thus abnormal
behaviour). Self is represented as a set of strings (with a
variety of d ifferent representations) depending on the
domain and antibodies or detectors are also represented as
strings. The binding between the strings is modeled by a
matching function, the most common one being contiguous
bits, which returns true when two strings match in more than
specified contiguous positions. This allows detectors to
match a variety of strings.[7-8] use detectors for non-self
(which is directly analogous to immune system), while in[9]
uses detectors for self.

3. Review of Related Literatures
It is well known that there are vulnerabilities in computer

and network systems due to design flaws that can lead to
security hazards[10, 11, and 19]. These flaws are expensive
to fix and it is difficult o r nearly impossible to build a
completely secure system void of design and programming
errors[12];[11] and[13]. Even a truly secure system is
vulnerable to abuse by insiders who abuse their
privileges[14].

It is glaring that we are stuck with systems that have
vulnerabilities fo r a while to come, the next direct ion is to
employ intrusion detection as a last line of defense. The
benefits of an intrusion detection system (IDS) include:
Detecting attacks or break-ins on system as soon as possible
preferably in real-t ime for appropriate actions: such as., shut
down the connections, trace back to identify the intruders, or
gather legal evidence to prosecute the intruder and
prevention of similar attacks in the future.

Intrusion detection is a process of detecting security
breaches by examin ing user and program activities in a
computer system. The most popular way to detect intrusions
has been by using the audit data generated by the operating
system. An adult trail is a record of activ ities on a system that
are logged to a file in chronologically suited order. Since
almost all activ ities are logged on a system, it is possible that
a manual inspection of these logs would allow intrusions to
be detected. However, the incredibly large sizes of audit data
generated make manual analysis impossible. IDS automate
the drudgery of wading through the audit jungle. Audit trails
are part icularly useful because they can be used to establish
guilt of attackers, and they are often the only way to detect
unauthorized but subversive user activity. The main goal of
effective IDS is to provide high rates of attack detection with
very small rates of false alarms[15]. Here, IDS is simply
categorized along two dimensions: Intrusion detection
approach – Misuse or anomaly detection and protected
system – host or network based.

 International Journal of Networks and Communications 2013, 3(3): 81-90 83

4. Intrusion Detection Datasets
The development of intrusion detection system has been

hampered due to lack of a common metric to gauge the
performance of current systems. Evaluation has really helped
to solve this problem in other developing technologies and
have guided research by identifying the strengths and
weaknesses of alternate approaches. Ideally IDS should be
evaluated on a real network and tested with real attacks.
However, it is difficu lt to repeat such test so that other
researchers can replicate the evaluation. In doing this,
network traffic would have to be captured and reused. This
raises the issue of privacy because sensitive information such
as email messages and passwords can be contained in real
traffic[16].

The KDD Cup 1999[17] used for benchmarking intrusion
detection problems is used in our experiment. The dataset
was a collect ion of simulated raw TCP dump data over a
period of nine weeks on a local area network. The training
data was processed to about five million connection records
from seven weeks of network traffic and two weeks of
testing data yielded around two million connection records.
The training data is made up of 22 different attacks out of the
39 present in the test data. The attacks types are grouped into
four categories: DOS, Probe, R2L and U2R, since our focus
is not to detect each attack type but the major category into
which each falls. Table 1 gives the different attack types
contained in the datasets.

Table 1. Different attack types for both training (known) and the additional
attack types included for testing (novel) for the four categories Known and
novel attack types

DOS Probe R2L U2R

Known(attacks in training dataset)

Back, land,
Neptune,

Pod, smurf,
teardrop

ipsweepsata
n, nmap,

portsw-eep

ftp_write,
guess_passwd,
warezmaster
warezclient,

imap, phf, spy,
multihop

rootkit ,
loadmodule,

buffer_overflow,
perl

Novel (additional attacks in test dataset)

apache2,
udpstorm,

processtable,
mailbomb

Saint,
mscan

named, xlock,
sendmail,

xsnoop, worm,
snmpgetattack,

snmpguess

xterm,p.s.,
sqlattack,
httptunnel

5. The Immunological Model
The model environment is defined over a universal set U,

where U is a finite set of finite patterns and is partitioned into
two sets, S and N, called self and nonself, respectively, such
that S∪N = U and S∩N =Ø. Self patterns represent
acceptable or leg itimate events, and nonself patterns
represent unacceptable or illegitimate events.

A pattern S ∈U is normal if it is in the memory, and is
anomalous otherwise, that is,

 ()

=∫
anomalous
normal

sM,
otherwise

mifsε
 (1)

where ∫ is a binary classification function and M is a set of
patterns drawn from U representing the memory of the
detection system, M ⊂ U.
Basic Assumptions

In this work some of the assumptions proposed by[8] was
adopted and used in building the system. All of the
assumptions are justified below:

i. U is closed and finite. For any given problem domain,
patterns must be represented in some fashion. A fixed size
representation is used, and any fixed size representation
implies a finite and closed universe.

ii. UNS =∪ and φ=∩ NS . If there are cases in
which this assumption does not hold, which means that
there will be patterns that are both self and nonself. It will
be impossible for any detection system to correctly
classify such ambiguous patterns, and so they will always
cause errors.

iii. Every location has sufficient memory capacity to
encode or represent any pattern drawn from U. Any
location that has insufficient memory capacity to
encode even a single pattern would be useless, and can
be disregarded. If there is a subset of locations for
which this assumption holds, then the analysis applies
to those locations.

5.1. The Detection System

There are two separate, sequential phases of operation to
the system: the first phase is called the training phase and the
second is called the test phase. During the training phase, the
detection system, D, has access to a training set, Utrn, which
can be used to initialize or modify the memory of D. During
the test phase, the detection system at each location l,
attempts to classify the elements of an independent test set,

Ul ⊆ U, with subsets Nl ⊂ N and Sl ⊂ S, such that
Nl ∪ Sl = Ul. The perfo rmance of the detection system in

terms of classificat ion accuracy are measured during the test
phase.

In real life situations data sets are made of discrete and
continuous variables. In line with this Entropy, a supervised
discretizat ion technique is used in discretizing continuous
attributes in data set. After, instances of redundant records
were removed from the training data set; the classification
model was obtained by matching the patterns of both self and
nonself in other to obtain the signature patterns of nonself.

5.2. Entropy Based Discretization Technique

Entropy, a supervised splitting technique used to
determine how informative a particu lar input attribute is
about the output attribute for a subset, is calculated on the
basis of the class label. It is characterized by finding the split
with the maximal informat ion gain[20]. It is simply
computed thus:

84 Adetunmbi A. O et al.: A Discriminatory Model of Self and Nonself Network Traffic

Let D be a set of training data set defined by a set of
attributes with their corresponding labels
The Entropy for D is defined as:

2
1

() log ()
m

i i
i

Entropy D P P
=

= −∑ (2)

where Pi is the probability of Ci in D, determined by dividing
the number of tuples of Ci in D by |D|, the total number of
tuples in D.

Given a set of samples D, if D is partit ioned into two
intervals D1 and D2 using boundary T, the entropy after
partitioning is

1 2
1 2(,) () ()

D D
E D T Ent D Ent D

D D
= + (3)

where | | denotes cardinality. The boundaries T are chosen
from the midpoints of the attributes values Informat ion gain
of the split,

Gain (D,T) = Entropy(D) - E(D,T). (4)
In selecting a spilt-point for attribute A, pick an attribute

value that gives the minimum informat ion required which is
obtained when E(D,T) is min imal. Th is process is performed
recursively on an attribute the information requirement is
less than a small threshold (0).

() (,)Ent S E T S δ− > (5)

6. Generation of Nonself Patterns in
Network Traffic

Adapting the concept proposed by[7]. The algorithm has
two phases:

1. Train ing phase: the censoring stage is a stage to
generate a set of detectors (D). Each detector is a string or
pattern that distinctly recognizes nonself depicted in Fig. 1.

2. Testing Phase: The monitoring stage determines the
performance of the proposed approach as depicted in Figure
2. If we view the set of data being protected (self) as a set of
string over finite alphabet, we are proposing to generate
detectors for all string not in the protected data set. Figures 1
and 2 depict the negative selection (Nonself) process.

Figure 1. Generation of Valid Detector Set (Censoring) (culled from[7])

Figure 2. The monitoring stage

[7] developed a negative- selection algorithm for change
detection based on the principles of self/non-self
discrimination in a computer that is based on the ways that
natural immune system distinguished self from non-self.

It is summarized as:
-Define self as a collection S of strings of length l over a

fin ite alphabeth.
-Generate a set R of detectors, each of which fails to

match any string in S.
-Monitor S for changes by continually matching the

detectors in R against S.
To generate valid detectors, the self strings are splitted

into equal-size segments.
For instance; breaking the fo llowing 32-bit string into

eight substrings, each of length four:

Figure 3.1a. The Training Phase for[7] approach

0010 1000 1001 0000 0100 0010 1001 0011 produces the
collection S of self (sub) strings to be protected (S contains

(i) Discretization of the continuous variables in the

training datasets made of self (normal) nonself

(combination of various attacks in the dataset);

(ii) Seperate the discretized datasets into two distinct

groups (self and nonself)

(iii) Divide each tuple in the discretized data of each

group into eight (8) – the first 7 groups contains 5

strings each while the last contains 6 totalling

forty-one which is the number of attributes in the

dataset.

 Redundant records of strings generated

 were removed for each class

(vi) Determine the Detector R by comparing nonself

strings generated (R) against the self strings (S) as
depicted in Figure 2.

Non self
Detected

Detector
Collector(R)

Projected
s trings (S)

No Matched

Self String(s)

Match

Reject

Generate
Random
Srings

Detector
Set®

yes

No

 International Journal of Networks and Communications 2013, 3(3): 81-90 85

all of the substrings). The second step is to generate random
strings (call this collect ion R0), and then match the strings of
R0 against the strings in S. Strings from R0 that match self are
eliminated. St rings that do generate random strings (call this
collection R0), and then match the strings of R0 against the
strings in S. Strings from R0 that match self are eliminated.
Strings that do not match any of the strings in S become
members of the detector collection (R), also called the
repertoire. Suppose R0 contains the following four random
strings: 0111, 1000, 0101, 1001. Then, R will consist of two
strings, 0111 and 0101, the strings 1000 and 1001 being
eliminated because they each match a string in S. Once a
collection R of detector strings has been produced, the state
of self can be monitored by continually matching strings in S
against strings in R. Figures 3.1a and 3.1b depict the
algorithm adopted in implementing[7] approach for network
traffic analysis:

Figure 3.1b. The testing algorithm

7. The Proposed Model
Our p roposed model was a modified version of[7], which

exclude generation of strings into groups which are
computationally intensive. Rather our proposed method
depends majorly on frequency distribution of attribute values
with regards to the class group to generate nonself signature
as spelt out in[18]. Examples of intrusions in Table 2 are
used in illustating the working principles of the method.

Table 2. Example of intrusion data

Object Protocol Service Urgent Category
0 Udp Private 16 Nonself
1 Tcp http 23 Nonself
2 Tcp ftp 20 Self
3 Tcp http 17 Self
4 Icmp ecr_i 25 Nonself
5 Udp domain_u 5 Self
6 Udp Domain 5 Nonself
7 Udp Private 6 Nonself
8 Icmp ecr_i 5 Nonself
9 Tcp Smtp 20 Self

10 Udp Private 24 Self

Table.2. shows extraction of suitable features representing
network connections based on the knowledge about the
characteristics that distinguished self from nonself
connections. It consists of three conditional features
(protocol, services and urgent), one decision feature (class)
and 10 objects.

The features are related to the network characteristics of
the connection extracted from the TCP/IP headers of packets,
which can be d ivided into two: intrinsic features, i.e.
characteristics related to the current connection, and traffic
features, related to a number of similar connections.

Table 3 which is an ext ract from table 1.0 shows the
frequency distribution of attribute values of feature protocol.
From this table, one could see that attribute value ICMP
clearly identify nonself because self has 0 value and nonself
has 2. Hence, ICMP becomes a signature pattern.

Table 3. Frequency distribution of the feature -protocol

Protocol Self Nonself
Udp 2 3
Tcp 3 1

Icmp 0 2

Also, Table 4 shows the frequency distribution of attribute
values of feature service. From Table 4, one could see that
attribute values ecr_i, domain, identify nonself, because
self has 0s values, while nonself has 2 and 1 respectively.
Hence, ecr_ i, and domain have become a signature pattern
for nonself.

Table 4. frequency distribution of the feature –service

Service Self Nonself
Private 1 2

http 1 1
ftp 1 0

ecr_i 0 2
Domain_u 1 0
Domain 0 1

Smtp 1 0

8. Experimental Setup and Results
The feasibility of this approach was demonstrated on the

KDD ‘99 cup intrusion detection benchmark dataset earlier
discussed. A total of 310,782 records were used for the
experiment out of which 186,472 records randomly selected
form the training dataset constituting 60.06% of the entire
records used for experimental purpose; while the remaining
124,312 (39.94%) records carefully selected in the test
dataset made up of all the attack types present.

All the attack types earlier mentioned are simply g rouped
as nonself for the purpose of this work while category normal
is simply renamed self. Preprocessing is grouped into three
steps. In the first step, categorical features like p rotocol_type
(3 different symbols tcp, udp,icmp), Serv ice (66 different
symbols), and flag (11 different symbols) were mapped to
integer values ranging from 1 to N where N is the total
number of symbol variation in each feature. In the second

For the testing, the following approaches are adopted:

i. Each in coming traffic is subjected to cut

 Points btained from discretization

 technique described in section 3.2

ii. Divides each coming network traffic tuple

 into groups of eight as described in Fig. 3.1a

iii. Compare the strings obtained with the Detector

 R, if any matches then network traffic is

 regarded as nonself else regards traffic as self.

86 Adetunmbi A. O et al.: A Discriminatory Model of Self and Nonself Network Traffic

step, continuous-value attributes like duration, src_bytes,
dst_bytes are standardized based on entropy earlier d iscussed.
Appendix 1 shows the cutoff points of entropy on continuous
attributes and the mapping obtained on the discretized
dataset.

After preprocessing in our approach, instances of
duplicated records were removed from the training dataset.
A total of 4264 records set made up of 3188 self and 1076
nonself were actually used for training and in obtaining the
signature patterns of nonself. While for the Stephanie
approach, the entire dataset was used.

8.1. Result Discussions

Nonself signature patterns are obtained based on
comparison of features in each network connection with the
class label self with that of nonself. Results are presented in
terms of variation(s) per attribute that achieved good levels
of discrimination of self from nonself. This clearly
distinguished a particular class label in the training data set.
This can easily be achieved by generating the frequency of
each variation per attribute against each class – self and
nonself. Table 5 shows the signature pattern of non self
obtained from the training dataset and a total of 12 attributes
out of 41 presented for training are chosen.

Table 5. The signature pattern of nonself obtained from the training set

s/n Column selected Variations
(x) Variation(x) Translation

1 1: duration 4; and
6

585 < x ≤ 712
717.5 < x ≤ 899.5

2 4: flag 8
9 RSTO

3 5: src_bytes

16
23
25
6

19.5 < x ≤ 27.5
1031 < x ≤ 1033.5

49080 < x ≤ 132704
x > 882177

4 6: dst_bytes 7 142.5 < x ≤ 144
5 11: hot 1 X > 2.5
6 18: num_shells 1 X > 0.5

7 21:
is_host_login X > 1

8. 24: srv_count 25 X > 419

9 26:
srv_serror_rate 1 0.00499916 < x ≤

0.0149975
10 30: diff_srv_rate 2 0.0349961 < x ≤ 0.104988

11
37:

dst_host_srv_dif
f_host_rate

2 0.504944 < x ≤ 0.634949

12 ‘ 11 0.824952 < x ≤ 0.939942

Figures 4, 5, and 6 show the dependency on the variations
of attributes 4, 5 and 6 to buttress or ratified the content of
table 5. The pattern in figure 4 reveals nonself at variation 8
and 9 of attribute 4. The frequencies of self at those
variations are 0 while nonself is 276 and 92 respectively.
These patterns can simply be presented using if .. then
statements. Tables 6 and 7 show the confusion matrix
obtained using the obtained signature of nonself in Tab le 5

on the training and test datasets. The computed accuracy
obtained on the training and testing are satisfactory and thus
shows that it is a promising approach. The training phase of
the approach in[7] resulted in six hundred and one (601)
Detectors R. Results obtained after matching the training and
test datasets on Detector R are depicted in Table 8 and 9
respectively.

The performance measures or accuracy is computed thus:

TP TNAccuracy
TP TN FP FN

+
=

+ + +
,

where
a. True Positives (TP), the number of self correctly

classified as self
a. True Negatives (TN), the number of nonself correctly

classified as nonself
b. False Positives (FP), the number of self falsely

classified as nonself
c. False Negative (FN), the number of nonself falsely

classified as self

Table 6. Classification obtained from Training dataset

Predicted as actual Self Nonself
Self (36354) 36354(100.00%) 0 (0.00%)

Nonself (150116) 5474 (3.65%) 144642(96.35%)

%06.979706.0
186470
180996

5474014464236354
14464236354

==

=

+++
+

=Accuracy

Table 7. Classification obtained from Test dataset

Predicted as actual Self Nonself

Self (24235) 24198(99.85%) 37 (0.15%)

Nonself (100077) 16881(33.17%) 83196(66.93%)

%39.86
124312
107394

37831961688124198
8319624198

==

+++
+

=Accuracy

Table 8. Classification obtained from Training dataset

Predicted as actual Self Nonself

Self (36354) 31798(87.47%) 4556 (12.53%)

Nonself (150116) 14743 (9.82%) 135373(90.18%)

%65.898965.0
186470
167171

14743455613537331798
13537331798

===

+++
+

=Accuracy

 International Journal of Networks and Communications 2013, 3(3): 81-90 87

Figure 4. Attribute 4 variation dependency of self and nonself

Figure 5. Attribute 5 variation dependency of self and nonself

self vs. nonself (attrib 4)

-500

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10

attribute variations

fr
eq

u
en

cy

self
nonself

self vs. nonself (attrib 5)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30

variations

fr
eq

ue
nc

y

self
nonself

88 Adetunmbi A. O et al.: A Discriminatory Model of Self and Nonself Network Traffic

Figure 6. Attribute 6 variation dependency of self and nonself

Table 9. Classification obtained from Test dataset

Predicted as actual Self Nonself
Self (24235) 21074(86.95%) 3161 (13.05%)

Nonself (100077) 14614(%) 85463(85.40%)

%39.86
124312
106537

1461431618546321074
8546321074

==

+++
+

=Accuracy

[7] approach is computational intensive during testing
which does not make it appropriate for practical use because
it has to compare the newly generated eights strings with the
six hundred and one earlier generated Detector-R in its
repertoire. The best matching that could be obtained is 1
while in a worst case it has to carry out exhaustive
comparison of 4808 matches. The probabilistic approach of
this technique was not evaluated as mathemat ical analysis
shows that it is more computationally expensive. The
mathematical analysis is computed thus:

Assuming, there are 3 strings defined over the five
alphabet (A,B,C,D,E) match at three contiguous locations.
The number of three contiguous strings that could be
obtained in a group of five alphabets = (number of strings in
a group) – (number of contiguous strings) + 1 = 5-3+1 = 3

Hence number o f exhaustive matching for a g roup
 = DetectorR * number o f contiguos * 3
 = 601 * 3 * 3 = 5,409.
Hence, for the eights groups that make up a network traffic

in this case = 601 * 5409 = 3 250, 809. Our proposed model
is less computational intensive, simpler and more effective in

terms of computational accuracy.

9. Conclusions
The need for effective and efficient security on our system

cannot be over-emphasized. This position is strengthened by
the degree of human dependency on computer systems and
the electronic superhighway (Internet) which grows in size
and complexity on daily basis for business transactions,
source of information or research. This technique based on
immune system for d iscriminating network t raffic was
implemented on Intel Pentium(R) 4, CPU 2.66GHz, 512 MB
RAM using C++ programming language.

From the experiment, IMNST performances outweights
that of Stephanie on both the train ing and testing sets as her
accuracy stood at 97.06% and 88.06%, against 89.65% and
85.70% respectively. The immune algorithm proposed is
easier in obtaining effective signature patterns for classifying
network traffic. This method could as well be employed in
obtaining virus signatures and in other classifying problems.
The results of the developed tools are satisfactory though it
can be improved upon. These tools will go a long way in
allev iating the problems of security of data on computing
systems.

Appendix 1: Cutoff Points Obtained on
Continuous Features

cut_point1[9] =
{0.5,2,132.5,585,712,717.5,899.5,1100.5,4490.5,};

self vs. nonself (attrib 6)

-500

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12

variations

fre
qu

en
cy

self
nonself

 International Journal of Networks and Communications 2013, 3(3): 81-90 89

cut_point5[25] =
{0.5,3,5.5,9.00001,18,19.5,27.5,36.5,103,105,106,168,168.
5,342,342.5,1031,1033.5,1480,1480.5,1563,2438,16050,49
080,132704,882177,};
cut_point6[10] =
{0.5,2.5,35.5,105,106,114.5,142.5,144,148.5,15235,};
cut_point8[1] = {0.5,};
cut_point9[0] = {};
cut_point10[2] = {0.5,2,};
cut_point11[1] = {2.5,};
cut_point13[1] = {0.5,};
cut_point14[1] = {0.5,};
cut_point15[1] = {0.5,};
cut_point16[1] = {0.5,};
cut_point17[2] = {0.5,1.5,};
cut_point18[1] = {0.5,};
cut_point19[2] = {0.5,1.5,};
cut_point20[0] = {};
cut_point23[35] =
{0.5,2.5,3.5,8.50001,9.50001,21.5,26.5,34.5,37.5,38.5,39.5,
41.5,42.5,43.5,44.5,45.5,46.5,47.5,48.5,53.5,54.5,66.5001,8
2.5001,85.5001,105.5,150.5,160.5,198.5,208.5,300.5,408.5,
413.5,484.5,485.5,509.5,};
cut_point24[25] =
{0.5,1.5,3.5,5.5,8.50001,9.50001,13.5,16.5,18.5,19.5,20.5,2
5.5,28.5,40.5,54.5,61.5,65.5001,84.5001,102.5,112.5,153.5,
155.5,162.5,206.5,419,};
cut_point25[18] =
{0.00499916,0.0149975,0.0249977,0.0349961,0.0449944,0
.0549965,0.0649949,0.0749894,0.0849915,0.0949937,0.11
499,0.144989,0.154984,0.164978,0.284973,0.954957,0.974
976,0.994996,};
cut_point26[7] =
{0.00499916,0.0149975,0.0249977,0.0749894,0.149994,0.
254975,0.974976,};
cut_point27[3] = {0.0499955,0.494995,0.994996,};
cut_point28[2] = {0.0249977,0.989991,};
cut_point29[6] =
{0.0349961,0.204987,0.219986,0.514954,0.909913,1,};
cut_point30[11] =
{0.00499916,0.0349961,0.104988,0.119995,0.144989,0.16
4978,0.204987,0.354981,0.464966,0.684937,1,};
cut_point31[6] =
{0.00499916,0.0149975,0.0249977,0.669922,0.709961,1,};
cut_point32[6] = {0.5,1.5,7.50001,23,218,255,};
cut_point33[13] =
{0.5,1.5,2.5,6.5,16.5,20.5,101,101.5,251,251.5,252.5,253.5,
254.5,};
cut_point34[0] = {};
cut_point35[18] =
{0.00499916,0.0149975,0.0249977,0.0349961,0.0449944,0
.0549965,0.0649949,0.0749894,0.0849915,0.0949937,0.11
499,0.144989,0.154984,0.164978,0.284973,0.954957,0.974
976,0.994996,};
cut_point36[9] =

{0.00499916,0.0149975,0.0549965,0.279968,0.294983,0.5
94971,0.964966,0.984986,0.994996,};
cut_point37[3] = {0.00499916,0.504944,0.634949,};
cut_point38[7] =
{0.00499916,0.0149975,0.0249977,0.0349961,0.0449944,0
.0949937,0.994996,};
cut_point40[15] =
{0.00499916,0.0149975,0.0349961,0.0849915,0.124985,0.
164978,0.414978,0.464966,0.704957,0.799927,0.814942,0.
864991,0.884888,0.974976,0.984986,};
cut_point41[12] =
{0.00499916,0.0249977,0.0449944,0.0549965,0.0849915,0
.11499,0.124985,0.454956,0.709961,0.749939,0.824952,0.
939942,};

REFERENCES
[1] G. Meade, Department of Defense Trusted Computer System

Evaluation Criteria, National Computer Security Service
Centre, 1985. csfc.nist.gov/publications/history/dod85.pdf
accessed February 2013

[2] S. Garfinkel, G. Spafford. Practical UNIX and Internet
Security, 2nd Edition. O’Reilly and Associates, Inc. 1996

[3] C. Janeway, P. Traves, Immunobilogy, The Immune System
in Health and Disease, 2nd Edition, Garland Science, New
York, 1996

[4] C. Rui, T. Ying, A Virus Detection System Based on
Artificial Immune System, International Conference on
Computational Intelligence and Security, China.
www.cii.pku.edu.cn/publication, 2009.

[5] N. Liu, D. Wang, X. Huang, S. Liu, K. Zhao, Network
Security Situation Awareness\Technology based on Artificial
Immunity System. International Forum on Information
Technology and Applications, 2009.

[6] C.A. Janeway, P. Travers, M. Walport, M.J. Shilomchik,
Immunology: The Immune System in Heath and desease, 5th
Edition, New York: Garland, 2001.

[7] F. Stephanie, S.P. Alan, A. Lawrence, C. Rajesh,
Self-Nonself Discrimination in a Computer. Proc of IEEE
Symposium on Research in Security and Privacy. Oakland:
IEEE Press, 1994. pp. 202 - 212.

[8] S.A. Hofmey, An Immunological Model of Distributed
Detection and its Application to Computer Security, PhD
Dissertation, University of New Mexico, 1999.

[9] S. Forrest, T.A. Longstaff, "A Sense of Self for Unix
processes", Proceedings of IEEE Symposium on Computer
Security and Privacy, Los Alamos, CA, 1996, pp.120-128.

[10] S. Bellovin, Defending against sequence number attacks
internet engineering task force, May RFC 1948. number
attacks internet engineering task force, May, RFC 1948, 1996

[11] L. Wenke, A data Mining Framework for Constructing
Features and Models for Intrusion Detection Systems. PhD

90 Adetunmbi A. O et al.: A Discriminatory Model of Self and Nonself Network Traffic

dissertation, Columbia University, USA http://www.cc.gatec
h.edu/~wenke, 1999.

[12] S. Northcutt, J. Novak, Network Intrusion Detection: An
Analyst’s Handbook, Second Edition, New Riders Publishers,
USA, 2001.

[13] S. Kumar, Classification and Detection of Computer
Intrusions. PhD Dissertation, Department of Computer
Science, Purdue University, 1995.

[14] H. Debar, What is behavior based intrusion detection? IBM
Zurich Research Laboratory, www.sans.org/privacy.php,
2003

[15] S. Axelsson, Intrusion Detection Systems: A survey and
Taxonomy, Department of Computer Engineering, Chalmers
University of Technology, Goteborg, Sweden. Technical
Report TR-99-15,2000.

[16] M. V. Mahoney, A machine Learning Approach to Detecting
Attacks by Identifying Anomalies in Network Traffic,
College of Engineering at Florida Institute of Technology,
USA, PhD Dissertation, 2003.

[17] KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup

[18] A.O. Adetunmbi, S.O. Adeola, O.A. Daramola Relevance
Features Selection for Intrusion Detection, Intelligent,
Automation and System Engineering, Lecture Notes in
Electrical Engineering, (Boston Springer), vol. 103, 2011,
pp. 407 – 418.

[19] A.O. Adetunmbi, S.O. Falaki, O.S. Adewale, B.K. Alese,
Intrusion Detection based on rough Set and k-Nearest
Neighbour, International Journal of Computing and ICT
Research, vol. 2 No. 1, 2008, pp. 60-66.

[20] H. Jiawei, K. Micheline, Data Mining: Concepts and
Techniques, Second Edition, Elsevier Inc., 2006.

	1. Introduction0F(
	2. Biological versus Computer Immune Systems
	3. Review of Related Literatures
	4. Intrusion Detection Datasets
	5. The Immunological Model
	6. Generation of Nonself Patterns in Network Traffic
	7. The Proposed Model
	8. Experimental Setup and Results
	9. Conclusions
	Appendix 1: Cutoff Points Obtained on Continuous Features

