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Abstract

Recently, intense research has been on how to reduceréeed sof virus on a network of computer
systems, which involves the mathematical modelling of gheead of virus based on mathematical
epidemiological approach. This is necessary because a thtestnmhot be discerned from the data
generated on the network, rather it requires a matheahatiodel to analyze and simulate the virus
dynamics on the network. It also enables the calculatidheobasic reproductive numbergjRvhich is
an important threshold for determining whether the netwoskt igsk or not. In this paper, we adopt the
susceptible- infected-recovered-susceptible (SIRS) irtoddepict the spread of virus on the netwark.
We qualitatively analyze the model and establish tmatvirus-free state is locally asymptotically staple
provided the basic reproduction number is less than unigysdWed the model numerically and simulate
the solution for different scenarios on the network. The findirgga our simulations are discussed.

Keywords: Mathematical model; basic reproductive number; vaccinataguilibrium solution; local
asymptotic stability.
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1 Introduction

Computer viruses have evolved in time, adopting differentegfies that take advantage of different weak
points of computers and software. These viruses are indeperfddm dependent of the platform’s
hardware and infect data files such as documents prddwith spreadsheets or word processors. The
spreading of computer viruses has been studied for long, yeaiese analogy with the models developed
for study of the transmission of biological disease [f]tHe biological framework, the key point is the
description of the epidemic process in terms of individuald their interactions. In this simplified
formalism, individuals can only exist in a discretedfettates, such as susceptible (or healthy), infectedl (an
ready to spread the disease), immune, dead (or removéd).irferactions among individuals are
schematized in structure of the contacts along wtiiehepidemics can propagate. This type of system can
be described as a network or graph [2] in which the nogl@®sent the individuals and the links are the
connections along which the epidemics propagates. Epidemmodel are heavily affected by the
connectivity patterns characterizing the population in twhite infective agent spreads, so as to illustrate
the features of epidemic spreading on the computer netweosre used the SIRS model. It is important to
stress, however that, the analysis on the computennetvef different models such as that of SIRS model
confirm the presented epidemiological model.

Several authors have suggested many nonlinear incidencetgatexdel the disease transmission process
[3,4,5].

Moreover, in the SIRS model, the population of host is dividka three classes, susceptible computers,
infected computers and recovered computers and several orapoulations are performed using different
initial conditions. The Susceptible — Infected - Recove®&) model was introduced by Kermack and
McKendrick, in 1927 [6]. In the model, they divided the populatiom ititree distinct groups of: the
Susceptible S, the Infected I, and the Recovered R, wierand R represents the number of systems in
each of the groups respectively and the total populatisrSN+ | + R. The Susceptible are those who are not
infected and not immune, the Infected are those who are edfenid can transmit the disease, and the
Recovered are those who are immune, either due to vacciratiecovery with immunity after infection.

2 Vaccination

Immunization in the computational realm is the abilitygrevent a viral program from executing and
replicating further to other hosts. There are many reasomgle might be immune to a virus. For example, a
host running Unix is immune to Windows-based viruses, or a nadebecome immunized against a
particular virus if the ways that the virus exploits timelerlying host are disabled.

It is our intent to know the ways in which immunizationnche achieved. Rather, assuming that
immunization techniques exist, our goal is to examine whateffiectiveness of immunization on the
computer network, because models for infectious deselesd to a better understanding of how vaccination
programs affect the control or eradication of the diseaser&eapular articles by [7] used optimal control
to study nonlinear SIR epidemic model with a vaccinatioogg@am. Also, [8] investigated a disease
transmission model by considering the impact of a proteataecine and found the optimal vaccine
coverage threshold required for disease control. Ing@kiclered an SIR epidemic model using vaccination
as control. Clearly, it is often not feasible to iommee the entire network. A more realistic approach would
be to immunize a subset of the population, and so choosingpiivepriate size and membership of that
subset becomes an important question. Thus, if disease e@adicat be achieved by partially vaccinating
some fractiorp of the population, an advantage is gained. The fraction tmbrinized must be such that
the remaining population, (1 —p)N where N depicts the total populatjowill no longer exceed the
threshold level necessary to perpetuate the disease. berthimology, the reproductive factét, of the
infection is to be reduced below 1. The percentage of the gmputa be vaccinated thus depends strongly
on the infectiousness of the disease.
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3 Mathematical Model Formulation

One of the simplest epidemiological model one can consislethé susceptible-infected-recovered-
susceptible (SIRS) model [10]. In SIRS model, individuals cag enist in three discrete states, namely,
susceptible, infected and recovered.

At each time step, each susceptible node is infected withapildy B if it is connected to one or more
infected nodes. At the same time, infected nodes are recdeered) and become again susceptible.

The SIRS model take into account the possibility of imdials removal due to purging or crash or acquired
immunization which would lead to the so-called susceptiffieested-removed (SIR) model. Using the case
of virus spread on the network, there is an arrival of sgsceptible systems into the network. For this type
of situation births and deaths rate must be included inntbdel. The following differential equations
represent the model which indicates the rate of changeuaiber of systems/individuals in each
compartment with respect to time.

ds
E=A—[351—k5—u5+pR (3.1)
a_ S I — kI —341 3.2
— = BSI—y (3.2)
dR
E=y1—pR—kR+uS 3.3)

It is important to note that the total number of systerdis/iduals under consideration at any point in time
can be obtained by N(t)= S(t)+I(t)+R(t), and its dynanigogiven by:

dN das dal dRr

E=E+E+E= A—dN + 61 (3.4—)
Several assumptions were made in the formulation of thesatiens: First, a system on the network must
be considered as having an equal probability as every otsiens of contracting the disease/virus at a rate
B, which is considered the contact or infection rate ofdisease/virus. Therefore, an infected individual
makes contact and is able to transmit the diseasefWiththers per unit time and fraction of contacts by an
infected with a susceptible $N. The number of new infections in unit time per infectiven isGN(S/N),

giving the rate of new infections (or those leavingghsceptible category) &V (%)I = BSI [11].

Table 1. The description of parameters used in the maed

Parameter Description Unit

A Constant rate of replacement of new system on network mbio/ unit time
B Rate at which the infection is transmitted on the network Rate /unit time

M Vaccination rate of susceptible system Rate / uni tim
r Troubleshooting success rate Rate / unit time

P Antivirus effectiveness warning rate Rate / unit time
) Purging rate i.e rate at which system’s get damaged sinetladue Rate / unit time

too virus infection
The rate at which system becomes obsolete/crashed@nd a Rate / unit time

removed from the network
The unit time is (per day)

~
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4 Model Analysis

4.1 Model well — posedness

Since the model monitors the number of computer system orethverk, all the variables and parameters of
the model are non-negative. Thus, we consider the mathathafeasible region

3 A
2={SI,Rl € RE3:N < 7
The rate of change of the total number of system onetveank per unit time is given by
S = A—kN— 061 < A—kN 4.1)

Theorem 1: Every solution of the model equations, (3.13.®) with initial conditions i, is a member of
Q (i.e the regiom2 is positive invariant and attracting).

Proof:
Based on eqgn (4.1), we have
dN

— < 4—-dN
dt

dN
then —+ dN < 4 (4.2)
dt
This gives integrating factor (I.F) & ¥4t = ekt multiplying the given equation (4.1) ¢, we have
e’“i—l:+ e*dN < Ae*t (4.3)
However, eqn (4.3) is equivalent to
= (Nek) < Aekt (4.4)

Integrating the proceeding equation with respedinte gives:

t d t
f — (NefHdt < f ektdt
0 dt 0

t

so, N(t)e“-N(0)< E e'“}

0

N(t)e" — N (0) s{%ekt}t < (Zok— 1)

K K
0
A
= N(t)e* < N(0) + E(ekt -1

N(t) < N(0)e ™k + %(1 — ek (4.5)



Bukola et al.; BIMCS, 17(5): 1-12, 2016; Article B&MCS.24816

In particular,N(t) < 4 if N(O) < %

Therefore, every solution of the model with initial ddgions inQ remains there for al > 0. so the region
Q is positive invariant and attracting. Consequently, it ficdent to consider the dynamics of the model in
Q. As a result, the model is mathematically and epidemicédly well posed.

4.2 Model equilibrium solutions

At equilibrium point

ds _ dl_ dR_
dt ~ dt dt

Thus, we have

A— BSI—kS— uS+ pR=0 (4.6)
BSI— yl —kI— 81 =0 4.7)
yI— pR—kR+ puS=0 (4.8)

From eqns 4.6, 4.7 and 4.8 simultaneously for S(t), I(t) gt \Re obtained the Virus — free equilibrium

E; = (S* I*,R¥)
Where
_[eox — _Alp+K) v _ . _
E, = [S T d(u+ ptk)’ I"=0, R = k(u+p+k)]

and the virus endemic equilibrium i

E, = [ S**—Y+k+6 k(p+k+ uk)ly+k+6)(Ry— 1)
- - ’ Blok + pS + vk + k% + k&)
ByAd+ uk+8)y+k+ 6)—vk(y+k+ 8)
B(pk + pS& + yk + k% + k&)

*k

R** —

4.3 Local stability of the virus — free equilibrium

We linearize the system of equations given, using the Jatatmtrix approach to obtain:

Evaluating the Jacobian matrix at the virus — free equilibrk; gives

Alp + k)
[_k_“ _ﬂ[k(u+ p+k)] p ]
UE) = A(p + 10 ‘
| 0 'B[k(u+p+k) “y—k=6 0
—p—kJ

We defined the characteristic polynomial equation ford{i&g) solve for the eigen valves, to get:

ABlp+k) —k(p+p+k)(y +k+9)
k(u+p+k)

M= —k, A=-n—p—k A3 =
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As we can seel; <0, 1, <0, So, for the virus — free — equilibrium to be locally apyotically stableA,
must be less than zero.

This is so if ABp+k) —k(u+p+k)(y+k+6)<0
which implies that

ABp+k) <k(u+p+k)(y+k+96)
and this is equivalent to

3 AB(p + k)
T k(utp+k)y+k+6)

WhereR, is the basic reproduction number.

It is imperative to note that thBasic Reproductive Numhedenoted ag,, is an important threshold in
modelling of infections diseases since it tells us ifopybation is at risk from a disease or not. Thus,
wheneverR, < 1 the new cases (i.e. incidence) of the disease will be oddatmase and the disease will
eventually be eliminated.

Based on foregoing, the Basic Reproduction nuniRgy for our model is less than unity i.e

R. = AB(p+k)
0 k(u+p+k)(y+k+6)

Then, I(t) decreases monotonically to zerotas «. Therefore, the virus — free equilibrium is locally

stable. The implication of this result is that we can dthe virus epidemic situation on the network to a

virus — free state provided we can put control measurgdatce on the network that would drive the

situations on the network sufficiently close to the virdsee state.

5 Numerical Solution and Simulation

The SIRS model was solved numerically using Runge — KutthadeWe adopted Matlab ode45 program,
which is based on an explicit Runge Kutta (4, 5) formul& & one-step solver used in solving a system of
first — order ordinary differential equation (ODE). $ocomputingy(t,), it needs only the solution at the
immediately preceding time poing(t,_,). In general, ode45 is the best function to apply assatfiy for
most problems involving systems of first order ODES. Ruagta of order four is also used in plotting the
graphs; it's a powerful and popular method because ofcitaracy and stability. Also, its simplicity and
stability make it one of the most widely used numerical rittyms for stiff and non-stiff equations, while it
converges faster than that of order two or three.

Table 2. Simulating the model using the following parametergalues

Parameters A p k p ) Y n

Value for Fig. 1 5 050 025 33 x 1072 23 x 1072  0.02 0.50
Value for Fi¢. 2 5 0.28 0.2t 3.3 x 1072 23 x 1072 0.0z 1.0C
Value for Fig. 3 5 0.125 0.25 3.3 x 1072 23 x 1072  0.02 1.50

These are the parameters used in plotting the graphsuglht, some of it changes due to the fact that they
are the major factors determining the situations ofnigtsvork. This implies that some of these parameters
determine whether virus would persist or be eradicatetth® network.
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In Fig. 1, there are 178 susceptible systems on the nettharlinfected systems increases on the first day,
because the virus propagate fast without the knowledgheofiser and it is able to subvert the systems
before the introduction of vaccine, while the vaccine inioedl is not strong enough to subvert the effects of

the virus on the systems on the network.
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Fig. 1. Solutions of SIRS model with S(0) = 100, I(0) = 4B(0) = 38

First, an initial worm infects one machine (computestsm) in the network. For the next few days (or
hours), the worm propagates freely in the network withiming noticed by most users. After some time,

users realise that there is an outbreak, and take appeopiition, by introducing a virus signature to
computers in the network which is in the form of an anti/ibut in these case the antivirus used was not
strong enough to subdue the effect of the virus that had wlieétted some of the systems on the
networks. The challenge is that the virus spread so fastabatering the systems is almost not possible.
Thus, the infected systems need to be purged from the netmstelad of trying to manage it. This may be
because the virus has interfered with the vaccine therelbgmineg detection, and the virus effect can be
severe such that which the virus could corrupt the viatakdse files thereby leading to a misleading effect
on vaccine behaviour. Moreover, if care is not taking, whecine can damage the system it intends to

protect (that is it can cause autoimmunity).

These kinds of challenges can be overcome by having teulimultaneous vaccinated systems with
different signature files which is referred to as vaceedundancy. This is based on Biodiversity concept
which could be applied to information technology (IT) environméfawever, the IT environment should
avoid the danger of software monoculture by using differeftiivare not the same at all time. Also, multiple
different operating systems should be on the key and clientrsdoskeep the data safe, if virus attack one

operating system the others will still be safe.

This scenario of an increasing numbers of infected systeoadled an epidemic. This is often the case when
the basic reproduction numb@&y, of virus on infected system is greater than uniy & 1). Thus, leading

to continuous increase in the number of infected systerhendtwork until it reaches its maximum, after
wish the number of infected systems start to decrease gidph depicts a scenario which could lead into an

endemic situation in the network wheRg > 1.

Since,

BA(p + k)

R >1
T X rk+ DG +k+6)
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Using specified parameters values to simulate the endemtish on the network,
B=54=05p=33%10"%k =0.25u=0.50,y = 0.02,6 = 2.3 %1072
The basic reproduction number is as computed below:

0.5%5(3.3 %1072 + 0.25)

R =

97 0.25(3.3 %1072 4+ 0.25 + 0.50)(0.02 4+ 0.25 + 2.3 * 10~2)
R, = 145 _ 10.76

70135

We can infer that the situation of the systems on thearktis endemic and it follows that an infection can
invade the entire network of computer systems wrecking hiavoajority of the system on the network.
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Fig. 2. Solutions of SIRS model with S(0) = 100, I(0) = 4B(0) = 38

In Fig. 2 above, there 178 susceptible systems on the netiverkumber of infected systems rate increases
sharply. The virus attacks on the network nearly subdue allystens before the introduction of vaccine at
mid-day. Immediately a strong vaccine was introducedirtfextion rate dropped and the systems on the
network recovered fully from the virus attack. Our sugpidn this situation is that, the worm propagates
freely in the network without being noticed by most userserA$ome time, the worm is detected on some
machines (by scanning the systems to know if there anses) and immediate action is taken to prevent
further spread and to cure infected computers. A worm signet@xtracted and included at a specified rate
in the antivirus (AV) software of most machines in théwoek. Machines that were not infected then
become automatically immune to the worm, and previoucted machines are being detected at a rate
which is depending on how often the AV update is made. Theskimes are then isolated, cured and
immunized against further infection.

Similarly, with

BA(p + k)

°F ko rk+ Dy +kt) 1
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and the parameters values used are
B=0254=5p=33%10"%k=0.25u=10,y =0.758 = 2.3 1072

0.25+5(3.3%1072+ 0.25)
0.25(3.3¥107240.25+1.0)(0.02+0.25+2.3%10~2)

We haveR, = =0.52

The situation of the systems on this network is that afsvir free equilibrium, it follows that there is an
outbreak of infection, but with the introduction of strong vaec{an anti-virus) all the systems were
recovered, the systems on the network is total free 0§ vihe basic reproduction number is now<R..

In this scenario, < 1 when compared with Fig.1 wherg R1. The observed difference in the two graphs
is due to the impact of the vaccination success patdr( the latter case, the vaccination is strong ehdag
ensure that initially infected systems are recovered vbileking new infection.

No of systems on the Network

3
(Time/day)

Fig. 3. Solutions of SIRS model with S(0) = 100, I(0) = 4B(0) = 38

The graph in Fig. 3 depicts a situation that would eventuediylt in virus — free network situation. This is
so because the number of infected system on the netwdricamtinue to decrease, until the virus is
eventually eliminated on the network, sime<« 1.

BA(p + k)

<1
Tk rk+ DG +k+6)

The parameters values used in this simulation are:
B =01254=5,p=33%10"%k =0.25u=2.0,y =0.75,6 = 2.3+ 1072
Therefore,

0.125 % 5(3.3 x 1072 + 0.25)

= =0.16
0.25(3.3 %1072 4+ 0.25+ 2.0)(0.02 + 0.25 4+ 2.3+ 1072)

Rqo

The situation of the systems on this network is thatirofsw— free equilibrium. It follows that if there is an

outbreak of infection, through the introduction of strong vacameafti-virus), all the infected systems will

be recovered. The systems on the network will eventuallydeeof virus, whenever the basic reproduction
number ISR, «< 1.
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Comparing the three graphs, Fig. 1 is totally of thaamfendemic equilibrium because the virus spread
freely at first before the introduction of vaccine, thecesine has little or no effect on the virus (i.e. the
antivirus is too weak to stop the spread of the virus) tlyemelbverting the systems on the network.

However, Figs. 2 and 3 is of a virus — free equilibriunairich the vaccine was able to control the spread of
the virus and it imputed the signature of the virus on thear&t(antivirus) in case the systems fall back

into susceptible state.

6 The Model Simulation with Varying Parameters

Below are the graphs of SIRS model which monitor the dycsraf systems on the network based on
changes on some of the model parameters.
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Fig. 4. Effects of changes in infection ratg) on the susceptible systems population
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Fig. 5. Effects of changes in vaccine ratg) on the infected system population
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The graph in Fig. 4 shows the sensitivity of the suscepsipitems in the network to changes in the
infection rate(B). As the rate of3 increases, the virus was able to infects a largerlptpn of systems on
the network before the infected number of systems staredsing. This decrease in the number of infected
systems due to the introduction of strong vacginehich helps in subverting the actions of the virus on the
systems in the computer network.

The graph in Fig. 5 shows the effectsuobn the spread of the virus on the network. The graph stiwvs
potency of the vaccine based on the changes in the paravaéies, from 0.02% to 0.75%, this means that
there is need to equip the systems on the network with stroivgwnagainst virus attack.

T
m— Gamma 1= 0.10
W= W Gamma 2 = 0.50

Gamma 3 = 0.75

No of recovered system on the network

time(days)

Fig. 6. The troubleshooting success rat@) on the infected systems population

The graph in above Fig. 6 shows the troubleshooting sucatessan the spread of virus on the systems on
the network. The success ratshows that there are chances for the infected systenhe aretwork to fully
recover if they are properly managed.

7 Conclusion

In this paper, we formulated an SIRS model to depictiyfmamics of virus spread on a network of computer
systems. The model virus-free equilibrium and virus-emdesquilibrium were obtained. Thereafter, we
derive the model basic reproductive numbeg) (Bnd showed that the virus-free equilibrium is locally
asymptotically stable if < 1. We solved the model equations numerically using Maitid5 solver
which is based on Runge-Kunta forth-order scheme. Thelaiions of the model solutions confirm that the
situation on the network tends to the virus-free state wieeri® < 1. Also, the simulations show that with
strong and effective vaccine on each of the computer systethe network coupled with high trouble
shooting success rate for infected systems, a virasagewvork is attainable and sustainable.
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